最近,修剪深度神经网络(DNNS)因提高准确性和泛化功率,降低网络规模以及提高专业硬件的推理速度而受到了很多关注。尽管修剪主要在计算机视觉任务上进行了测试,但几乎没有探索其在医学图像分析中的应用。这项工作调查了众所周知的修剪技术,即层和网络范围的修剪,对组织学图像中细胞核实例分割性能的影响。我们利用的实例分割模型由两个主要分支组成:(1)语义分割分支,以及(2)深层回归分支。我们研究了修剪对两个分支的性能的影响分别对两个分支的性能以及最终的核实例分割结果。在两个公开可用数据集上进行了评估,我们的结果表明,层修剪的性能比在较小的压缩比(CRS)的网络修剪方面稍好,而对于大型CRS,网络范围的修剪会产生出色的性能。对于语义分割,深度回归和最终实例分割,可以通过层的修剪来修剪93.75%,95%和80%的模型权重,而相应模型的性能降低了2%。
translated by 谷歌翻译
急性和慢性伤口,不同的病因在经济上负担医疗保健系统。估计晚期伤口护理市场估计到2024年达到220亿美元。伤口护理专业人员提供了适当的诊断和治疗,并依赖于图像和图像文件。图像中伤口边界的分割是护理和诊断方案的关键组分,因为重要的是估计伤口面积并提供治疗的定量测量。不幸的是,这个过程非常耗时,需要高度的专业知识。最近,基于深度学习的自动伤口分割方法表明了有希望的性能,但需要大型数据集进行培训,并不清楚哪种方法更好。为解决这些问题,我们提出了与2021年医学图像计算和计算机辅助干预(Miccai)一起组织的脚溃骨细分挑战(Fuseg)。我们构建了一个卷绕图像数据集,其中包含从889名患者2年内收集的1,210脚溃疡图像。它是由伤口护理专家注释的像素,并分成具有1010个图像的训练和有200张图像的测试设置,用于评估。世界各地的团队制定了自动化方法,以预测测试集的伤口分割,其中保留了私人注释。评估预测并基于平均骰子系数进行排序。 Fuseg挑战仍然是会议后作为伤口细分基准的开放挑战。
translated by 谷歌翻译
足球溃疡是糖尿病的常见并发症,与大量发病率和死亡率有关,仍然是低腿截肢的主要危险因素。从脚伤中提取准确的形态特征对于适当的治疗至关重要。尽管医学专家的视觉检查是诊断的常见方法,但这是主观且容易出错的方法,因此,计算机辅助方法提供了一种有趣的选择。基于深度学习的方法,尤其是卷积神经网络(CNN),在包括医学图像分割(医学图像分割)的各种任务方面表现出了出色的性能。在本文中,我们提出了一种基于两个基于编码器的CNN模型,即Linknet和U-NET,以执行足球溃疡分割。为了处理有限数量的可用培训样品,我们使用预训练的权重(linkNet模型的有效网络B1和U-NET模型的有效网络B2),并使用MEDETEC数据集进行进一步的预训练,同时还应用了许多形态 - 基于颜色的增强技术。为了提高分割性能,我们结合了五倍的交叉验证,测试时间扩展和结果融合。我们的方法适用于公开可用的慢性伤口数据集和Miccai 2021足球溃疡分段(Fuseg)挑战,我们的方法分别以92.07%和88.80%的基于数据的骰子得分实现最先进的性能,并且是最高的,并且是最高的,并且是最高的。 Fuseg挑战排行榜中排名的方法。 https://github.com/masih4/foot_ulcer_segmentation公开获得对接指南,推理代码和保存训练的模型。
translated by 谷歌翻译
语言随着时间的流逝而演变,单词含义会发生相应的变化。在社交媒体中尤其如此,因为它的动态性质会导致语义转移的速度更快,这使得NLP模型在处理新内容和趋势方面具有挑战性。但是,专门解决这些社交平台动态性质的数据集和模型的数量很少。为了弥合这一差距,我们提出了Tempowic,这是一种新的基准,尤其是旨在加快基于社交媒体的含义转变的研究。我们的结果表明,即使对于最近发行的专门从事社交媒体的语言模型,Tempowic是一个具有挑战性的基准。
translated by 谷歌翻译
te reo m \ = aori(称为m \ = aori),新西兰的土著语言在语言技术中的资源不足。 m \ = aori扬声器是双语的,其中m \ = aori用英语进行了代码开关。不幸的是,M \ = AORI语言技术,语言检测和M \ = Aori-English对之间的代码转换检测的资源最少。英语和M \ = AORI都使用罗马衍生的拼字法制作基于规则的系统来检测语言和代码转换限制性。大多数M \ = AORI语言检测是由语言专家手动完成的。这项研究构建了66,016,807个单词的Aori英语双语数据库,并带有单词级语言注释。新西兰议会汉萨德辩论报告用于构建数据库。语言标签是使用特定语言规则和专家手册注释分配的。 M \ = AORI和英语的单词具有相同的拼写,但含义不同。这些词不能根据单词级的语言规则将其归类为M \ = AORI或英语。因此,需要手动注释。还报道了报告数据库的各个方面的分析,例如元数据,逐年分析,经常出现的单词,句子长度和n-grams。这里开发的数据库是新西兰Aotearoa的未来语言和语音技术开发的宝贵工具。遵循标签数据库的方法也可以遵循其他低资源的语言对。
translated by 谷歌翻译
开放访问(OA)有助于访问文章。但是,作者或资助者通常必须支付出版费用,以防止没有参加OA出版和参与OA文章的引文优势的作者。 OA可能会加剧出版系统中现有的不平等现象,而不是克服它们。为了调查这一点,我们研究了Springer Nature发表的522,664篇文章。采用统计方法,我们描述了与来自不同收入水平的国家 /地区的作者之间的关系,其出版选择(OA或封闭式访问)以及论文的引用影响。一种机器学习分类方法帮助我们探索了作者的OA出版与属性之间的关联,尤其是有资格获得APC Waivers或折扣,期刊,国家和论文。结果表明,与其他作者相比,有资格获得APC-Waivers的作者在Gold-Oa-Journals上发布更多。相比之下,有资格获得APC折扣的作者的OA出版物比率最低,从而假设这种折扣不足以激发作者在Gold-Oa-Journal中发布。期刊的排名是在金色杂志上发布的重要驱动力,而OA选项大多是在混合期刊中避免的。资历,OA出版物的经验以及科学领域是OA出版物中最具决定性的因素。
translated by 谷歌翻译
叙事中的事件可以通过其参与者的基本状态理解为一致的整体。通常,这些参与者在叙述中没有明确提及,而是通过常识性或推论填写。理解叙述的模型应该能够推断出这些隐性参与者状态,以及有关这些状态对叙事的影响的原因。为了促进这一目标,我们介绍了一个新的众包参与者指出的数据集意大利面。该数据集包含有效的,可推断的参与者状态;对国家的反事实扰动;如果反事实是真实的,那么故事的变化将是必要的。我们介绍了三项基于州的推理任务,这些任务测试了一个故事何时由故事启用,修改一个反事实状态的故事,并解释给定经过修订的故事的最有可能的状态变化。我们的基准测试实验表明,尽管当今的LLM能够在某种程度上推理有关州的推理,但仍有很大的改进空间,这表明了未来研究的潜在途径。
translated by 谷歌翻译
本文介绍并验证了一种新型的肺结节分类算法,该算法使用X射线图像中发现的多重分子特征。提出的方法包括一个预处理步骤,其中应用了两种增强技术:直方图均衡和小波分解和形态操作的组合。作为一种新颖性,使用基于小波领导者的形式主义的多型特征与支持向量机分类器一起使用。还包括其他经典纹理功能。当使用多重分子特征与经典纹理特征结合使用时,获得了最佳结果,最大ROC AUC为75 \%。结果显示使用数据增强技术和参数优化时的改进。在类似的实验设置中比较时,所提出的方法在计算成本和准确性中,比模量最大小波形式性更加有效,更准确。
translated by 谷歌翻译
传统的深度传感器产生准确的真实世界深度估计,即使仅在仿真域训练的最先进的学习方法也会超越。由于在模拟域中容易获得地面真理深度,但在真实域中很难获得,因此我们提出了一种利用两个世界的最佳方法的方法。在本文中,我们展示了一个新的框架,ActiveZero,这是一个混合域学习解决方案,适用于不需要真实世界深度注释的活动立体宽度系统。首先,我们通过使用混合域学习策略来证明我们的方法对分发外数据的可转换性。在仿真域中,我们在形状原语数据集上使用监督差异丢失和自我监督损失的组合。相比之下,在真实域中,我们只在数据集中使用自我监督损失,这些损失是从培训仿真数据或测试真实数据的分发。其次,我们的方法介绍了一种名为Temporal IR的自我监督损失,以增加我们在难以感知地区的重新注入的鲁棒性和准确性。最后,我们展示了如何训练该方法的端到端,并且每个模块对于获得最终结果很重要。关于真实数据的广泛定性和定量评估表明了甚至可以击败商业深度传感器的最新状态。
translated by 谷歌翻译
增加对肉类产品的需求与农业劳动力短缺相结合,导致需要开发新的实时解决方案来有效监控动物。使用跟踪逐方法连续定位单个猪进行了重大进展。然而,这些方法由于单个固定摄像机而不能以足够的分辨率覆盖整个地板的椭圆形钢笔。我们通过使用多个相机来解决这个问题,使得相邻摄像机的视野重叠,它们在一起跨越整个楼层。当猪从一个摄像机视图到相邻相机的视图时,避免跟踪中的断裂需要相互作用的切换。我们在地板上识别相邻的相机和共用猪位置,在地板上使用视图间的界面定位。我们的实验涉及两个生长良好的钢笔,每个成长型猪,每个猪,以及三个RGB相机。我们的算法首先使用基于深度学习的对象检测模型(YOLO)来检测猪,并使用多目标跟踪算法(DevelSort)创建其本地跟踪ID。然后,我们使用相互相互作用的共享位置来匹配多个视图,并为在整个跟踪中保存的每只猪生成全局ID。为了评估我们的方法,我们提供了五种两分钟的长视频序列,具有完全注释的全球标识。我们在单个摄像头视图中跟踪猪,多目标跟踪精度和精度分别为65.0%和54.3%,实现了74.0%的相机切换精度。我们在https://github.com/aifarms/multi-camera-pig-tracking中开源我们的代码和注释数据集
translated by 谷歌翻译